Introduzione
Stanchezza e affaticamento cronico, perdita di forza, crampi, fibromialgie, aritmie, scarsa digeribilità e svuotamento gastrico, alvo alterno, disturbi dell'umore, irritabilità, "bipolarismo funzionale" sono alcuni dei sintomi vaghi (MUS) che il nostro fisico può manifestare quando la trasmissione degli impulsi nervosi viene alterata a causa di variazioni nelle concentrazioni ioniche. In particolare, le alterazioni che riguardano potassio e magnesio sono determinanti nel causare squilibri nella conduzione nervosa che si possono manifestare con sintomatologie a carico degli apparati muscolare, cardiaco, nervoso e gastro-intestinale.
Il potassio è un elettrolita di cui l'organismo necessita per svolgere una serie di funzioni tra cui la regolazione dell'equilibrio idroelettrolitico, la trasmissione nervosa, la conversione dello zucchero nel sangue in glicogeno (Gly) [41] e la sintesi delle proteine, mentre il magnesio è indispensabile per numerose attività tra cui le reazioni enzimatiche, il mantenimento dell'equilibrio elettrolitico, il metabolismo energetico e la proliferazione cellulare.
I due minerali sono importanti sia quando vengono visti singolarmente sia quando vengono analizzati insieme. Esiste una relazione tra le loro concentrazioni: numerosi studi evidenziano che a un deficit di magnesio si lega una carenza di potassio [29] e che isolati disturbi dell'equilibrio del potassio non producono alterazioni dell'omeostasi del magnesio mentre la deplezione di magnesio produce una secondaria deplezione di potassio.
Il rapporto potassio/magnesio (Ratio K/Mg) (BIA-ACC) rappresenta il rapporto tra i due ioni ed è un indicatore prognostico della capacità funzionale dei potenziali d'azione: tanto più il suo valore si discosta per difetto da 4.8, tanto più sarà alterato il potenziale di membrana e quindi la generazione dei potenziali d'azione nei tessuti eccitabili.
Ripristinare o mantenere il corretto rapporto potassio/magnesio è pertanto essenziale per mantenere i valori di polarizzazione di membrana entro i limiti fisiologici e quindi per non alterare i potenziali d'azione la cui variazione si manifesta con MUS a carico dei tessuti eccitabili (muscolare, cardiaco, gastro-intestinale e nervoso).
Potassio
Il potassio è uno ione maggiormente presente nei liquidi intracellulari nei quali si trova distribuito per circa il 98% (ICK-potassio intracellulare) [41] mentre il restante 2% è contenuto nei liquidi extracellulari (ECK-potassio extracellulare) [41]; questa compartimentazione viene mantenuta dalla pompa sodio-potassio, di fondamentale importanza per il passaggio di molecole contro gradiente elettrochimico e di concentrazione attraverso la membrana cellulare. Il diverso gradiente di concentrazione intra ed extra cellulare è necessario per la polarizzazione cellulare che influenza diversi processi come gli impulsi nervosi e la contrazione delle cellule muscolari (incluso il muscolo cardiaco), perciò, alterazioni relativamente piccole della concentrazione sierica di questo ione possono avere significative manifestazioni cliniche. In soggetti adulti, valori minimi di potassio si attestano intorno a 2500 mmol di Potassio totale (TBK-potassio totale) [41].
All'interno delle cellule il potassio è necessario per la normale crescita cellulare e la sintesi delle proteine; la maggior parte del potassio intracellulare è contenuto all'interno delle cellule muscolari pertanto il potassio totale del corpo è proporzionale alla massa magra corporea [1] ed in particolare alla massa muscolare (Skeletal Muscle FFM) [41].
Figura 1: JN THE JOURNAL OF NUTRITION
Il grafico dimostra come c'è una linearità tra potassio totale (TBK) [41] e il valore di proteine totali (Tbprotein) [41]: all'aumentare della TBprotein aumenta il potassio totale. Risulta evidente che le cause di perdita di potassio sono legate a tutte quelle situazioni in cui si assista a perdita di massa magra (sottoalimentazione “starvation”, sarcopenia, cachessia, sedentarietà, patologie infiammatorie, patologie renali, intestinali e cancro).
Potassio extracellulare e potenziali d'azione
Il potassio extracellulare è di fondamentale importanza nel mantenimento dell'efficienza della pompa sodio-potassio che serve a conservare la carica elettrica all'interno della cellula, funzione particolarmente importante per le cellule muscolari nervose.
Ha un ruolo centrale
La perdita del potassio dall'ambiente intracellulare a quello extracellulare (ECK) [41] porta ad una alterazione della polarizzazione del potenziale delle membrane cellulari, abbassando l'eccitabilità dei tessuti e alterando la funzionalità dei sistemi neuromuscolari, cardiaci e gastrointestinali, con il conseguente manifestarsi dei sintomi vaghi e aspecifici (MUS) a carico dei diversi apparati:
Inoltre il potassio è essenziale per la conversione dello zucchero nel sangue in glicogeno (Gly) che è la forma nella quale il glucosio vienne accumulato nei muscoli e nel fegato (gly o glycogen mass) [41]; una riduzione dei depositi di glicogeno provoca l'aumento della fatica e della debolezza muscolare [3], inoltre il suo ridotto "storage" determina un aumento del glicogeno libero (Gly Free- glicogeno libero) [41] che porta a lipogenesi e quindi all'aumento del tessuto adiposo in particolare si assiste ad un accumulo del grasso addominale viscerale [39].
Alterazioni nel potenziale d'azione
In figura viene riportato l’andamento del potenziale di azione in differenti condizioni di rapporto tra potassio intra ed extracellulare. Modifiche del rapporto intra-extracellulare del potassio determinano non solo uno spostamento del potenziale elettrico di membrana a riposo (REMP), ma tendono anche a prolungare complessivamente il potenziale di azione per effetto dell’allungamento della fase di ripolarizzazione tardiva principalmente a carico delle correnti del potassio. La perdita del potassio intracellulare, attraverso la perturbazione dell’equilibrio Ki/Ke, porta ad una iperpolarizzazione cellulare, all'aumento dei tempi di attivazione e alla depolarizzazione cellulare. Teoricamente l’iperpolarizzazione di un singolo tipo cellulare non dovrebbe generare aritmie perché implica un allontanamento del REMP dal potenziale di attivazione. In realtà l’iperpolarizazione favorisce i fenomeni di rientro. A livello cardiaco coesistono diversi tipi cellulari (nodale, di conduzione e muscolare) e la differente polarizzazione degli elementi cellulari crea un dissincronismo e innesca un meccanismo che è alla base della genesi di circuiti di rientro. La riduzione del potassio intracellulare rappresenta quindi un fattore di rischio aritmogeno; a conferma di ciò, uno studio ha documentato che pazienti aritmici in dialisi presentavano un valore più basso di potassio intraeritrocitario rispetto a quello riscontrato nei pazienti non aritmici. Più recentemente è stato evidenziato come l'elevata perdita di potassio che avviene durante emodiafiltrazione standard influisca sui potenziali elettrici cellulari, determinando un maggiore rischio aritmogeno nei pazienti in trattamento con dialisi [43].
La stabilità elettrica del cuore, infatti, è più sensibile alla concentrazione di potassio extracellulare (ECK-potassio extracellulre) [41] rispetto a quella intracellulare: un miocardio ischemico perde potassio nello spazio extracellulare in pochi secondi e la cellula diventa depolarizzata [40].
Variazioni del potassio extracellulare si possono verificare anche in condizioni normali a causa
il fenomeno che si verifica è analogo a quello sopra descritto: il potenziale di membrana a riposo, che in condizioni fisiologiche è di -84 mV, aumenta e può arrivare fino a circa -67 mV tuttavia, a potenziali transmembrana sopra -70 mV i canali di inattivazione del sodio sono chiusi, rendendo il tessuto non eccitabile [14]. Pertanto, aumenti dei valori di potassio extracellulare (ECK) [41], alterano non solo la soglia di stimolazione ma anche il meccanismo di eccitazione; tale condizione sembra essere dovuta dall'apertura dei canali ATP dipendenti [22,23,42].
Magnesio
Il magnesio è il secondo catione intracellulare più abbondante, circa la metà del magnesio totale (TBMg- Magnesio totale) [41] nel corpo è presente nei tessuti molli (Stm-minerali dei tessuti molli) [41], l'altra metà è nell'osso (circa 60%) e meno dell'1% nei liquidi extracellulari (tale concentrazione è importante per la trasmissione degli impulsi nervosi e per il controllo delle contrazioni muscolari). Il magnesio è indispensabile per numerose attività enzimatiche, infatti è implicato nei meccanismi di regolazione di 300 complessi enzimatici diversi, inoltre è importante per il mantenimento dell'equilibrio elettrolitico ed è di fondamentale importanza per la normale funzione neuromuscolare così come il trasporto di calcio e potassio, è necessario anche per l'attivazione della pompa sodio-potassio, il metabolismo energetico e la proliferazione cellulare [12, 44].
Assorbimento
Viene assorbito dal piccolo intestino e la concentrazione sierica viene controllata attraverso l'escrezione renale.
La carenza di magnesio è estremamente comune ed è collegata a una serie di fattori che riducono l'assorbimento o aumentano la secrezione del magnesio; le cause possono essere legate
I sintomi più comuni da deficit di magnesio sono:
Carenza di magnesio e patologie
Bassi livelli di magnesio aumentano la predisposizione dell'organismo verso malattie come cardiopatie, ipertensione arteriosa, calcoli renali e depressione: uno studio effettuato negli Stati Uniti su soggetti carenti di magnesio hanno dimostrato che tali individui erano maggiormente predisposti a patologie quali l'aterosclerosi, l'infarto del miocardio, l'ipertensione, il cancro, la calcolosi renale, la sindrome premestruale e i disturbi psichiatrici [4].
Altre ricerche si sono concentrate a dimostrare l'efficacia del magnesio nel trattamento delle aritmie, dell'asma grave e dell'emicrania; il suo uso per i problemi di stipsi e dispepsia è accettato come terapia standard nonostante le prove limitate [2,3,5,6,7]. Pertanto i soggetti maggiormente interessati a trarre beneficio dall'incremento dell'uso di magnesio sono coloro che presentano:
Magnesio e potenziale d'azione
Una deplezione di magnesio può produrre, a carico della muscolatura cardiaca, cambiamenti elettrocardiografici acuti, infatti l'ipomagnesemia è implicata nell'aritmia ventricolare di grado severo [10]. Studi dimostrano che lo ione ha un'azione depressiva sul cuore: un aumento indotto della concentrazione di ioni di magnesio determina una riduzione della frequenza sinusale.
Esperimenti in vivo hanno dimostrato che un aumento della concentrazione di magnesio provoca ipotensione dovuta a vasodilatazione mentre una sua diminuzione è spesso associata a un aumento della pressione sanguigna causata da vasocostrizione. Questi dati suggeriscono che il magnesio può influenzare l'accoppiamento eccitazione-contrazione nella muscolatura liscia vasale. Sono stati studiati gli effetti di una aumentata concentrazione extracellulare di magnesio sulle proprietà meccaniche ed elettrofisiologiche di muscoli lisci: un aumento del magnesio extracellulare ha ridotto l'ampiezza sia delle contrazioni elettricamente indotte che delle contrazioni spontanee. Un aumento della concentrazione di magnesio porta a regolazione dell'afflusso del calcio attraverso i canali voltaggio-dipendente e regola così la contrattilità muscolare [11].
Importanza del Magnesio per il controllo del Potassio (Ratio K/Mg)
I due minerali sono importanti non solo quando vengono visti singolarmente ma anche quando vengono analizzati insieme, infatti esiste una relazione tra le loro concentrazioni. Evidenze suggeriscono che a un deficit di magnesio si leghi una carenza di potassio [29]: l'ipomagnesemia si collega all'insorgenza di ipokaliemia e ipocalcemia; l'ipokaliemia è un evento comune nei pazienti con ipomagnesemia e si manifesta con una frequenza dal 40 al 60% dei casi. Questo sembra derivare da una incapacità della cellula a mantenere la normale concentrazione intracellulare di potassio forse a causa di un aumento della permeabilità della membrana al potassio e/o all'inibizione della Na-K ATPasi; come risultato, le cellule perdono potassio che viene secreto nelle urine. La deplezione di potassio nelle cellule richiede la correzione del deficit di magnesio.
Isolati disturbi di equilibrio del potassio non producono alterazioni dell'omeostasi del magnesio, al contrario, la deplezione di magnesio produce una secondaria deplezione di potassio.
Con BIA-ACC è possibile valutare sia i valori di potassio extracellulari, sia i valori di magnesio che il Ratio K/Mg cioè il rapporto che c'è tra i due ioni.
Ratio K/Mg rappresenta un indicatore prognostico della capacità funzionale dei potenziali d'azione, il suo valore ideale è pari a 4,8 (v.n 4.6-5) e rappresenta la massima attivazione dei potenziali d'azione (vedi supplementi con corretto rapporto Magnesio/Potassio). Il mantenimento del Ratio K/Mg è fondamentale
Tanto più ci si discosta da quel valore per difetto, e tanto maggiore sarà la percezione dei sintomi vaghi (MUS): una perdita lineare del Ratio K/Mg con valori inferiori a 4,5 porta a una forte presenza dei sintomi vaghi (MUS) a carico dei tessuti eccitabili.
Gli apparati interessati sono pertanto:
Magnesio e Potassio: Campi di applicazione
Potassio e stanchezza muscolare
Come sopra descritto, il potassio è essenziale per la conversione dello zucchero nel sangue in glicogeno (Gly) [41]; una riduzione dei depositi di glicogeno provoca l'aumento della fatica e della debolezza muscolare.
Cardiovascolare: ipertensione
Potassio e magnesio sono utili nei disturbi del sistema cardiovascolare: le potenzialità di una dieta ricca di potassio di abbassare la pressione sanguigna derivano, almeno in parte, da un'attività natriuretica dello ione che promuove l'escrezione renale di sodio e diminuisce l'impatto negativo di diete ricche di sodio. Inoltre, il modesto aumento di potassio sierico ottenibile con una dieta ricca di potassio ha un effetto sulla iperpolarizzazione dell'endotelio vascolare, l'effetto netto è quello di aumentare la produzione di ossido nitrico endoteliale mentre viene soppressa la produzione di superossido. Studi epidemiologici rivelano che un aumento dell'assunzione di potassio può ridurre il rischio di infarto e soprattutto ictus [13].
Altre ricerche mostrano una relazione inversa tra pressione arteriosa e assunzione di potassio e tale effetto sembra essere maggiore nelle persone con ipertensione rispetto a soggetti con pressione sanguigna nell'intervallo di normalità [14].
Anche il magnesio sembra esser utile nel trattamento dell'ipertensione: piccoli cambiamenti nei livelli di magnesio possono avere effetti significativi sulla eccitabilità cardiaca, sul tono vascolare, sulla contrattilità e sulla reattività del cuore. La maggior parte degli studi epidemiologici e sperimentali hanno dimostrato un'associazione inversa tra concentrazioni di magnesio e pressione sanguigna, tant'è che la supplementazione di magnesio è consigliata nei pazienti ipertesi che assumono diuretici, affetti da ipertensione resistente o secondaria [8,15].
Un altro studio dimostra che il grado di carenza di magnesio intracellulare nelle donne con angina è strettamente correlata alla frequenza di dolore toracico [16].
A questi benefici si devono aggiungere le considerazioni fatte sull'importanza dei due minerali nel modulare i potenziali d'azione.
Problemi neurologici
Il magnesio gioca un ruolo importante nella conduzione del Sistema Nervoso; la carenza di magnesio è un fattore di rischio ben noto per lo sviluppo di neuropatologie tra cui la depressione: si è dimostrato che è possibile avere un recupero rapido (meno di 7 giorni) dai sintomi depressivi con l'assunzione di magnesio. Hanno tratto beneficio dall'assunzione di tale ione anche soggetti con traumi cranici, cefalea, ideazione suicidaria, ansia, irritabilità, insonnia, depressione post-partum, perdita di memoria a breve ternine [17]. I disturbi da carenza da magnesio possono essere spiegati con il fatto che il suo deficit provoca un'apertura dei canali del calcio N- metil-D-aspartato (NMDA), causando danno neuronale e disfunzioni neurologiche che possono manifestarsi come la depressione maggiore. La somministrazione orale di magnesio ha portato a effetti paragonabili a quelli dei farmaci anti-depressivi [8,9,18].
Anche i più comuni stati d'ansia sono legati alla carenza di magnesio: esiste una relazione tra perturbazione nell'omeostasi del magnesio e stati d'ansia patologica; la carenza di magnesio provoca un aumento della trascrizione dell'ormone rilasciante corticotropina nel nucleo ipotalamico paraventricolare che a sua volta porta ad un aumento di ACTH, indicando una maggior stimolazione dell'asse HPA.
Ricerche recenti hanno dimostrato che i fenomeni convulsivi coincidono spesso con un aumento delle concentrazioni di potassio extracellulare: risultati sperimentali hanno rivelato un'alta concentrazione di potassio extracellulare durante le crisi epilettiche [19].
Date queste premesse si sono studiati gli effetti di una elevata concentrazione extracellulare di potassio sugli interneuroni dell'ippocampo: all'aumentare di tale concentrazione seguiva un aumento dell'attività di scarica, indicando che l'aumento del potassio osservato durante la crisi stimolava le attività interneuronali e suggeriva la perdita o la compromissione della funzione inibitoria neuronale [20].
Sembra inoltre che valori alti di potassio extracellulare possano contribuire alla fisiopatologia di importanti disturbi neurologici, inclusi l'ischemia cerebrale e l'emicrania [21].
Disturbi apparato gastro-intestinale
Una dieta carente in magnesio porta a ripercussioni anche a carico dell'apparato gastro intestinale che si manifestano con alterazioni della motilità del tubo digerente e che possono arrivare anche all'atonia del colon. La carenza di magnesio può indurre un significativo aumento dell'infiammazione intestinale (valutata dall'infiltrazione di neutrofili) e causare importanti modifiche funzionali negli organi locali e maggiore sensibilità allo stress ossidativo.
Un'integrazione di tale ione è utile perché aumenta il rilascio di colecistochinina (CCK), che porta ad accumulo di fluido intestinale e stimola motilità nell'intestino tenue [25,26,27,28].
Conclusioni
Il magnesio è essenziale [30,31,32,33,34,35,36]
così come per l'omeostasi di calcio e potassio un deficit di magnesio si lega a una carenza di potassio e di calcio; quindi la sua integrazione risulta utile anche per la salute delle ossa e dei denti.
Il potassio, a sua volta, interviene [37,38]:
Risulta chiaro che benefici di una supplementazione combinata dei due ioni a carico di tutti i tessuti eccitabili del nostro organismo da quello muscolare, al cardiovascolare, al nervoso e gastrointestinale sono evidenti.
Bisogna inoltre ricordare che i due ioni sono importanti non solo visti singolarmente ma anche nel loro insieme: il ratio K/Mg ci da un valore indicativo dell'attivazione dei potenziali d'azione dei tessuti eccitabili, tanto più questo rapporto si discosta in deficit dal valore ideale (4,8) (v.n. 4,6-5) tanto maggiore sarà la percezione dei MUS.
E' necessario inoltre tener presente che esiste una dipendenza del potassio nei confronti del magnesio dato che una carenza di magnesio causa una secondaria carenza di potassio mentre una carenza di potassio non è legata a una carenza di magnesio.
Supplementi alimentari a base di magnesio e potassio (assunzione ideale a metà mattina, prima dello spuntino) in cui il rapporto tra magnesio e potassio (1:4,8) è stato valutato misurando strumentalmente il recupero dei valori di potassio totale (TBK) [41] e di potassio extracellulare (ECK) hanno lo scopo primario di stabilizzare il potassio extracellulare a valori massimi del 2% del potassio totale incrementando l'efficienza cellulare dei tessuti eccitabili. Come conseguenza si avrà un aumento della numerosità di attivazione dei potenziali d'azione. Maggiore è la frequenza dei potenziali d'azione e maggiore sarà il feedback del sistema nervoso centrale e periferico con attivazione fisiologica del sistema neuro-vegetativo (SNV).
Attivare quindi i potenziali d'azione, che per diverse cause risultano essere alterati a causa di una depolarizzazione, significa trarre notevoli benefici a carico di tutti i tessuti eccitabili (muscolare, cardiaco, gastro-intestinale e nervoso).
Autori: Dario Boschiero - Data: 29/06/2021
Attenzione: l'utilizzo dei contenuti è libero per il solo ed esclusivo utilizzo di studio personale, la fruizione è regolata dalla L. n. 633/1941 e ss.mm.ii. e dalle norme vigenti in materia di tutela del diritto d'autore e dei brevetti. È vietato qualsiasi utilizzo a fini commerciali e di profitto.
Bibliografia